Expression and localization of FRMD7 in human fetal brain, and a role for F-actin
نویسندگان
چکیده
PURPOSE FERM domain containing 7 (FRMD7) is a member of the four-point-one, ezrin, radixin, moesin (FERM) family of proteins, and has been reported to cause X-linked idiopathic congenital nystagmus (ICN), a disease which affects ocular motor control. There have been over 30 mutations reported for FRMD7, however, their role in the pathogenesis of ICN remains unclear. The purpose of this study is to perform the expression distributes of protein FRMD7 from human fetal brain during development and to understand the relationship with cytoskeletal protein F-actin between wild-type and mutation-type FRMD7. METHODS Expression of protein FRMD7 from developing human fetal brain was tested by immunohistochemistry. Enhanced green fluorescent protein (EGFP)-tagged recombinant plasmids DNA encoding the normal or mutant FRMD7 were used to transiently transfect the mouse neuroblastoma cells (Neuro-2a) and human embryonic kidney 293 cells (HEK293T). Further, confocal microscopic analysis was used to determine the subcellular localization of the fusion proteins. To visualize F-actin, fixed HEK293T cells were stained with rhodamine-phalloidin. RESULTS We show that expression of FRMD7 was mainly detected in the brainstem (a region associated with ocular motor control), while limited level was observed in the cortex. The COOH-terminus of FRMD7 was found to play a key role in the subcellular localization of FRMD7 in mouse neuroblastoma cells (Neuro-2a) and human embryonic kidney 293 cells (HEK293T). While no differences in the co-localization of F-actin between the wild-type and missense mutation-type (c.781C>G and c.886G>C) proteins was observed, an additional mutant, c.1003C>T, which results in a COOH-terminally truncated protein, exhibited a nuclear localization pattern which did not co-localize with the cytoplasmic distribution of F-actin. CONCLUSIONS The results of the present study indicate that FRMD7 may play an important role in the brainstem in the early stages of development of the human fetal brain, and provides clues for the mechanism of mutation FRMD7, which may be involved in influencing F-actin dynamics.
منابع مشابه
Expression of a novel splice variant of FRMD7 in developing human fetal brains that is upregulated upon the differentiation of NT2 cells
FRMD7 mutations are associated with X-linked idiopathic congenital nystagmus (ICN); however, the underlying mechanisms whereby mutations of FRMD7 lead to ICN remain unclear. In a previous study, the first FRMD7 splice variant (FRMD7-S) was cloned and identified, and FRMD7-S was hypothesized to play a significant role in neuronal differentiation and development. The present study investigated a ...
متن کاملIdentification of a novel FRMD7 splice variant and functional analysis of two FRMD7 transcripts during human NT2 cell differentiation
PURPOSE FERM domain containing protein 7 (FRMD7) mutations are associated with X-linked idiopathic congenital nystagmus (ICN). The purpose of this study is to identify a novel splice variant of FRMD7 (FRMD7-S) in both humans and mice with a shortened exon 4 relative to the original form of FRMD7 (FRMD7-FL),and to detect the role of FRMD7-FL and FRMD7-S in the process of neuronal development. ...
متن کاملThe nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development.
Mutations in the gene encoding FERM domain-containing 7 protein (FRMD7) are recognized as an important cause of X-linked idiopathic infantile nystagmus (IIN). However, the precise role of FRMD7 and its involvement in the pathogenesis of IIN are not understood. In the present study, we have explored the role of FRMD7 in neuronal development. Using in situ hybridization and immunohistochemistry, ...
متن کاملP-41: Evaluation of CAPZA3 Expression in Infertile Individuals Undergoing Intracytoplasmic Sperm Injection
Background: CAPZA3 is one of the actin-capping proteins believed to be play an important role in controlling of actin polymerization during spermiogenesis and has been shown to be peresent in mature sperm. Immunohistochemistry showed that human CAPZA3 is localized in the neck region of ejaculated sperm, with moderate and faint signals also detected in the tail and post-acrosome region respectiv...
متن کاملA novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus
Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder of eye movement that can be caused by mutations in the FRMD7 gene that encodes a FERM domain protein. FRMD7 is expressed in the brain and knock-down studies suggest it plays a role in neurite extension through modulation of the actin cytoskeleton, yet little is known about its precise molecular function and the effects...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2011